

北京融讯光通科技有限公司 2024 年 1 月

目 录

第一	-章 5G 实践条件建设思路	2
	1.1 5G 通信实训室的建设基础与必要性	2
	1.2 可培养技术团队人员 5G 通信方面能力	2
	1.3 5G 通信实训室如何建设	3
第二	- 章 5G 网络仿真平台建设要求	3
第三	E章 5G 网络仿真产品设计	4
第四	日章 仿真平台详细介绍	5
	4.1 5G 网络仿真平台简介	5
	4.2 平台特点	7
	4.3 功能介绍	8
	4.4 5G 仿真实训内容	15

第一章 5G 实践条件建设思路

1.1 5G 通信实训室的建设基础与必要性

各网络安全实验室前期大多数已建设通信全网实训设备,并开设了光信技术(包括光传输与光接入技术)、通信工程实训(涵盖现代交换技术、5GC 移动通信技术等)等相关实训课程,具备相关网络技术实践基础。

总体来说,网络安全试验室已具备一定的培养通信类行业应用性人才的能力。但是从目前行业及教学发展趋势来看,除了通信技术、交换技术、4G 移动通信技术等方面的人才需求外,未来行业内将产生更多的5G相关的技术人才需求,开设5G相关课程、培养5G人才将成为当前5G主流网络环境下的主要任务之一。在现有网络安全实验室建设基础上,拓展建设5G通信实训内容在当前形式下是比较合适的。

1.2 可培养技术团队人员 5G 通信方面能力

网络安全实验室开设相关新技术的课程一定要充分考虑部队需要,从目前来看,5G通信相关岗位将主要集中在几个方面:

- 5G 网络规划设计: 在网络的前期,会有网络的规划设计岗主要负责无线网络的覆盖
 容量规划,包括网络参数,核心网的网络参数,无线网,传输网的参数的规划,以及软硬件的规划。
- 5G 网络部署与维护: 当网络规划设计好以后,现网开始大规模的建设,那这个时候就需要这种岗位的人才发挥作用。对于5G来讲的话,5G的设备维护、设备的部署可以分为两大类,一类是 CT 类的,一类是 IT 类的。在 5G 里面,IT 类的设备 所占的比例会越来越高, 比如说像核心网,传输的 SDN 控制器,无线网 CU 底层 都是基于 IT 架构。所以今后设备的维护会分成 CT 设备部署维护和 IT 设备的部署维护。
- 5G 技术创新能力:业务/网络切片的编排主要负责网络架构的设计。NFV 的管理和业务编排主要负责整个架构设计,还有今后的业务的部署的编排。比如说在不同的网络里面应该部署什么业务,应该在什么位置部署业务,还有整个网络切片的设计,不同的业务怎么去设计它的切片,怎么去保障业务的 Qos。这个岗位相对于以前的 2G ,3G ,4G 来讲,是新增的岗位。
- 5G 业务的体验和优化: 5G 里面业务种类非常多,不同的业务对网络质量的诉求不同。对于今后的业务部署来讲,需要专门岗位的人才,对各种各样的业务做相应的测试与体验,并且给出相应的反馈。最终通过参数的优化去调整网络的业务体验。类似于现在的网络优化,但是会基于不同的业务。
- 5G 行业应用解决方案:这里所提到的解决方案,更多是针对垂直行业。比如说针对特种行业、新网络应用、车联网、无人机等,该提供怎样的网络方案,需要解决方案去做前

期的需求调研分析,并且基于客户的需求调研分析,设计出符合客户需求的解决方案,这类岗位需要我们的业务训战能力。

从上述内容来看,网络安全实验室开设 5G 课程及相关实践要与行业需求匹配,重点实现对技术团队 5G 网络规划、 5G 网络部署与维护、5G 业务需求分析与设计、5G 业务的体验和优化、5G 行业应用解决方案等方面能力的培养。

1.3 5G 通信实训室如何建设

现阶段,建设 5G 通信实际网络系统,对大多数网络安全实验室是比较困难的。一个是建设成本较高,建设一套 5G 基站+核心网设备至少三四百万,另一方面,设备厂家现阶段按要求只能对运营商提供入网许可的设备,不会面向网络安全实验室提供设备 ,5G 真实系统走到实际教学有较多的待解决问题。

另外,建设 5G 通信实际网络系统,很难在实验室展示 5G 的特性。5G 网络除了高速率以外,还包括多种不同的业务场景,如超低时延等,还有 5G 网络切片等特性,都很难在实验室布置实体的环境来进行相关的测试。

比如:

由于空间限制,上百公里的传输时延对业务特性的影响,在实验室难以展示;无法展示边缘 DC、区域 DC、核心 DC 等概念,也难以展现 5G 网络功能下沉对实际业务带来的提升;

5G 应该能够根据不同业务进行网络切片,这就要求网络设备的网元要有多个,这样才能根据实际需要选择不同的网元进行业务。而实际实验室不可能建多套网络设备;

特种行业、新网络应用、车联网、无人机等等 5G 的典型业务场景,这些都难以在实验室进行实际的展示。总的来说,建实际的 5G 设备,如果在实验室,基本只能展示 5G 的高下载速率,其他 5G 核心内容难以实际训练。

应该来说,采用实际的 5G 设备进行教学,能够训练专业技术人员一部分的网络建设与设备开通能力,并且能够直观的展示 5G 大带宽的相关测试,但是从目前来看,性价比是较低的。要达到对专业技术人员 5G 技术能力综合性培养的目的,必定要依赖于 5G 教学化的实训平台,实现 5G 网络规划、5G 网络部署与维护、5G 业务/网络切片的编排、5G 业务的体验和优化、5G 行业应用解决方案等方面的综合实训。从这个方面来看,建设基于 5G 技术的仿真实验平台,利用信息化的仿真手段,展示 5G 网络工程、技术原理、行业应用等多方面的知识、场景及实践内容,使专业技术人员通过仿真平台的训练,掌握 5G 综合技能,是比较可行的。

第二章 5G 网络仿真平台建设要求

总体来说,5G 通信实训室目前应主要考虑5G 仿真实训教学平台的建设,平台要能完成

对专业技术人员 5G 网络规划、5G 网络部署与维护、5G 业务/网络切片的编排、5G 业务的体验和优化、5G 行业应用解决方案等方面能力的培养。这也对 5G 仿真平台提出一定的要求:

1、平台一定要基于 5G SA 独立组网标准进行开发研制,必须要有 5G 核心网。

5G 核心网相对 4G 核心网的改变极大,5G 的很多特性都依赖于5G 云化核心网的相关能力,包括边缘部署、低时延、网络切片等5G 特性。而NSA 非独立组网方案,采用4G 核心网+5G 基站,缺少5G"大脑",难以展示5G 大部分的技术原理。

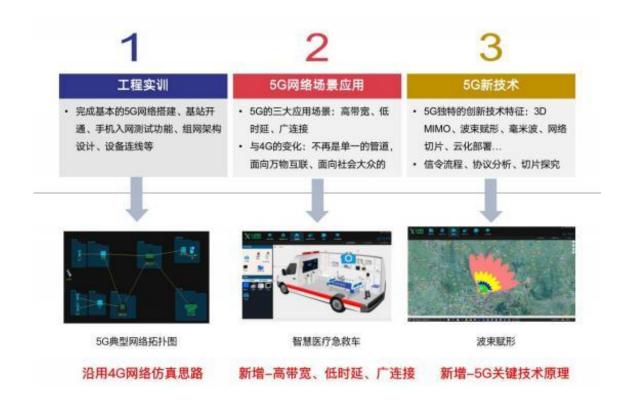
2、平台必须能够支持 5G 各项新技术的实践与学习,包括 5G 新空口、网络切片、NFV、 边缘计算等 5G 新技术。

其中 5G NR 新空口,包含 5G NR 新架构、新频谱、大带宽、灵活子载波间隔、灵活时隙、大规模 MIMO 等多种技术;网络切片是 5G 网络满足行业海量应用的网络需求的基础,5G的 eMBB、URLLC、mMTC 三大场景均依赖于针对 5G 网络的切片编排与应用,而网络切片依赖于 NFV 和边缘计算等技术来实现。

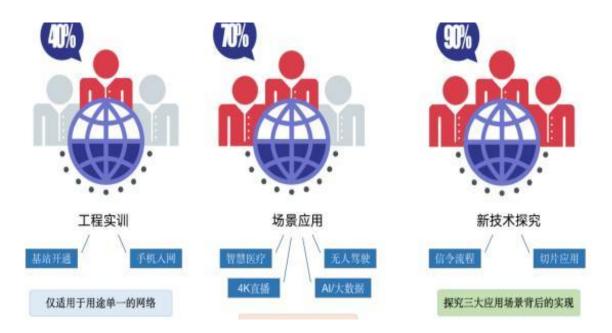
对于 5G 的原理学习来说,如上新技术都是 5G 网络最核心的技术内容,所建设的 5G 网络仿真平台必须支持进行这些技术的实践。

3、平台必须支持行业应用场景的架构、原理及效果的展示,使专业技术人员理解依托于 56 网络的实际应用。

工信部苗圩部长提到,将来 20%左右的 5G 设施是用于人和人之间的通信,80%用于人与物,物与物的通信。5G 网络作为国家重大战略,本质上是其能够催生出各种不同的行业应用,5G 已经不仅是一门技术,而是一个产业,更是推动其它各个产业发展的一项基础产业。


对于专业技术人员来说,一定要理解不同行业的应用是如何依托于 5G 网络实现的,如何根据 5G 网络特性及行业特点,设计出符合行业需求的 5G 应用,并针对 5G 应用,如何对 5G 网络进行网络切片的编排来满足应用运行的需要。

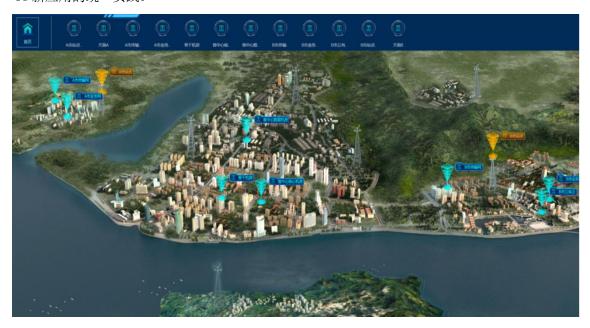
4、平台必须支持 5G 技术原理、5G 网络工程、5G 行业应用的统一实践,达到对专业技术人员综合性培养的目的。


对于 5G 通信的学习来说,不能片面的只学习 5G 工程方面的内容,必须要将工程与 5G 原理对应起来,并依据 5G 网络理解行业应用的实现。只有这样,才能真正在大框架上理解 5G 技术的理论及应用,并具备实际工作技能,才符合综合性应用人才的培养目标。

第三章 5G 网络仿真产品设计

5G 网络仿真究竟应该具备哪些必要组成部分呢?可以肯定的是,5G 的实训不光光是工程实践能力的培训,5G 网络赋能社会,赋能万物互联,需要结合5G 的新技术,既能培养基本的通信工程专业,还能培养5G 创新型人才。5G 网络仿真平台应包含如下三大组成部分:

具备了这些部分, 其对应的 5G 网络技能组成基本也就清晰了。



第四章 仿真平台详细介绍

4.1 5G 网络仿真平台简介

5G 网络仿真平台能够进行 5G 核心网、5G 基站、5G 传输网、5G 应用等全网络的技术原理与工程实训。支持 5G 网络规划、网络部署、网络配置与开通、应用设计与搭建、业务体验、网络性能指标测试、协议及业务过程分析等全方位的综合实训。能够实现 5G 新架构、5G 新技术、

5G 新应用的统一实践。

5G 网络仿真平台按真实电信机房环境搭建,能仿真 5G 核心网、接入网、传输网的主要网元设备,并且 5G 核心网设备按照 NFV 云化框架进行搭建,能够实现从中心到到边缘多级 DC 的部署方案,能够实现动态的网络切片功能。可以基于边缘计算和网络切片功能构建 5G 关键应用场景,并仿真业务的时延,速率等关键参数以用于规划和测试。

平台能完整仿真实际 5G 通信网络的全网功能,能够进行 5G 网络的拓扑规划、硬件搭建、数据配置、网络开通及业务验证、协议分析等全过程实训,提供基于场景的网络学习功能,打造 5G 系统有坡度、有重点的学习体系。

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7
网络拓扑规划设计	机房建设设备搭建	网络配置 切片编排	切片应用业务体验	协议流程 数据分析	网络测试 性能分析	网络优化 故障处理
5 G网络整体 见划 基站架构规 リ 虚拟网络功 走、微服务规划	通信场景设计 机房选型/建 设 设备安装/连 线	NFV虚拟网络功能配置 边缘计算服务配置 56核心网配置 NR无线参数配置 MR无线参数配置 网络切片编排	网络切片应用 与激活 AR/VR业务测试 上网/语音/视 频业务测试	入网流程协议 分析 微服务注册协 议分析 切换流程解析 业务过程分析	时延指标测试 速率 、容量指 标测试 射频覆盖、干 扰测试	5G网络故障定 位与处理 5G网络性能优 化 5G网络覆盖优 化

4.2 平台特点

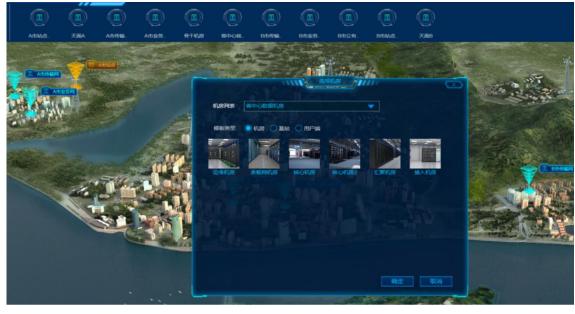


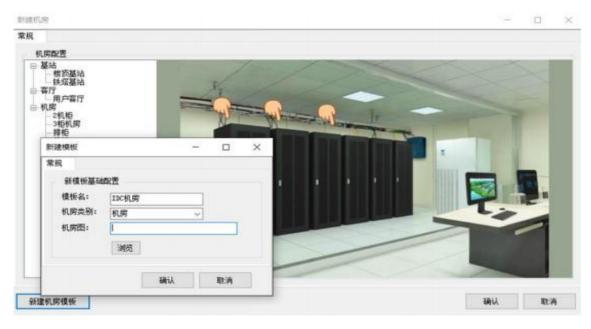
- 平台设计依据 5G 网络新架构实现,支持 SA 独立组网架构,支持 5G 网络切片,能完整展示不同场景下的业务需求与技术实现。
- 支持的 5G 核心网 SBA 架构,实现了 AMF/SMF/UPF/UDM/AUSF/PCF/NSSF/NRF 等 8 类 5G 核心网虚拟化网络功能仿真,采用 SBI 接口,支持云化部署,可在不同级别云上灵活部署与组网设计,并实现网络切片功能。
- 支持不同基站架构组网形态,支持CU,DU,AAU 三种RAN网元,支持CU+DU分离式与合设两种不同基站架构,并且CU可以采用云化架构进行部署,DU可以进行集中化和分布式部署。
- 5G NR 新空口原理到工程一体化实践,支持 5G NR 新架构、新频谱、大带宽、灵活子载波间隔、灵活时隙、大规模 MIMO 等 5G 新空口技术实践。
- 5G 网络仿真平台支持专业技术人员自定义进行网络切片的编排,依据业务需求自主编 排网络切片的结构及相关设置。
- 包含 NFV 虚拟化/边缘计算等新技术实践内容,支持核心/区域/边缘数据中心(DC),支持 NFV 虚机及微服务部署,并支持添加各项应用及边缘计算服务(CDN、AR 渲染计算)等,展示 5G 中重要基础技术的概念与形态。
- 支持不同行业场景的 5G 新应用展示,平台支持各种应用的场景搭建与技术实现,
- 支持 eMBB、URLLC、mMTC 三大应用场景,支持 8K 直播、AR/VR 业务、智慧医疗等垂直行业应用。

4.3 功能介绍

4.3.1 灵活拓扑,自由组网

5G 网络规划设计支持专业技术人员自由设计网络结构,支持任意机房的添加/删除及机房内设备的部署。可以由小型网络开始,直到复杂业务组网的实战训练。充分理解网络中各个部分的作用,学会根据需求设计网络的总体结构,提升专业技术人员的网络规划能力。



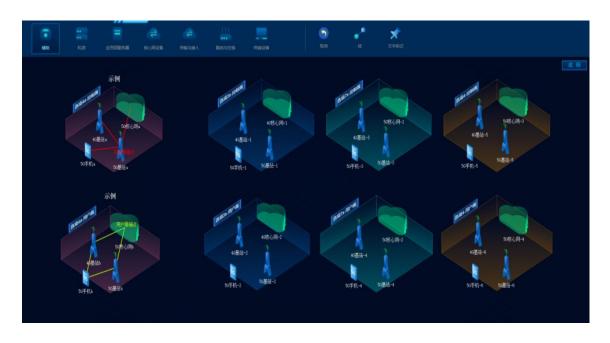

4.3.2 百变场景, 自主设计

软件提供场景搭建板块,能够依据网络规划内容,进行机房建设与设备部署实训。该模块支持专业技术人员自主编辑场景(自由设计场景地图),并根据实际工程情况选择不同机房模板或新建机房模板,完成机房选型与建设。在设备安装与搭建方面,可根据规划内容选择设备,将设备安装至机柜或相应的安装位置,并进行设备之间的连线,完成设备的部署与网络的搭建。

选择/新增机房模板


设备安装与搭建

4.3.3 设备数据,专业配置


支持网元数据及业务配置功能,支持 5G 云化核心网、RAN 网元、OTN/PTN 传输网、数据通信 网的业务配置功能,包含各网元的切片配置、私有配置、无线参数配置,并且支持各项业务的开通与体验。各项业务设置参数均与 NR 空口原理、光传输原理、NFV 虚拟化原理等理论结合,实现工程与原理的统一实践。

5G NR 空口参数设置

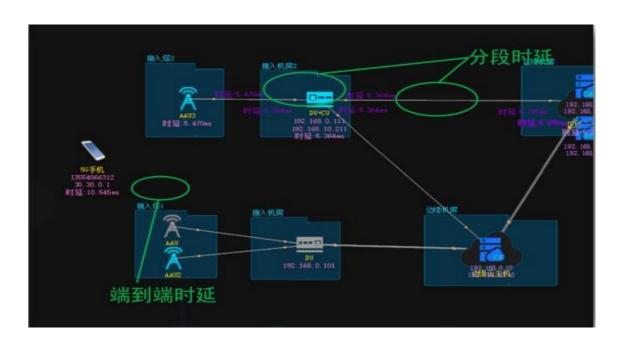
5G NFV 虚拟化网络功能的部署与配置

4.3.4 网络切片,按需编排

可搭建支持 eMBB、URLLC、mMTC 三大应用场景的网络切片功能,并且支持专业技术人员自定义进行网络切片的编排,专业技术人员可按照自己想法自主编排网络切片的结构及相关设置,并仿真各种个性化的网络业务。

网络切片设置与编排

4.3.5 网络测试,故障诊断


支持诊断业务配置完成后,自动发现错误节点的功能,辅助专业技术人员渐进式网络安全实验室,打造有坡度的5G学习体系,简化学习过程。

可以支持虚拟的 5G 终端进行入网测试,业务体验测试等功能。为帮助专业技术人员进行

故障定位及处理,平台支持业务的测试和诊断功能,支持 ping 测试或 trace 测试等功能,并支持终端的时延及下载速率等网络性能指标的测试功能,方便分析网络性能。根据实际测试的网络性能与网络需求的差异,进行网络切片/配置参数等内容的优化分析。

网络搭建匹配性验证

时延指标测试

覆盖/速率/容量等指标测试

4.3.6 协议流程,深度解析

支持查看不同网元间的信令流程,包含 RRC, NAS-MM, NAS-SM, SBI 等协议,支持信令过程的流程图查看和拓扑图查看等两种方式。平台支持 5G 协议分析功能,能以流程图形式展示协议过程且支持 Wireshark 抓包查看与分析,并且为了方便单独分析各种通信过程,软件提供各种通信事件的筛选功能,能够快速定位并查看不同通信事件的协议过程。

4.4 5G 仿真实训内容

5G 网络虚拟仿真系统可作为高校 5G 新技术实验室的核心组成设备,即可独立用于高校开展 5G 网络新技术的教学与实践,也可和实际 5G 通信设备配合,以虚实结合、虚实互补的方式共同进行教学的组织与开展。其中 5G 网络虚拟仿真系统可开展的实践内容如下:

序号	章节	实训内容	课时安排
1	5G 移动通信系统 认知	1.5G 仿真软件平台基本操作	2
2	5G 组网方案与系 统架构演进	 5G 组网方案认知与分析 5G 系统组成与架构演进分析 5G 网络架构综合设计 	6
3	5G 无线站点组成 与建设	 5G 基站设备认知与组网实践 5G 站点选型与设备部署 5G 建设方案规划设计 	6
4	5G 基站运行原理 与工程应用	8. 5G 基站协议接口与链路建立9. 5G 基站设备小区配置与开通10. 5G 基站参数核查与故障处理	6
5	5G 空口技术原理 与工程应用	11. 基站无线资源配置与测试分析实验;12. 阵列天线与覆盖影响分析实验	6

第 15 页 共 18 页

		13.	5G 信号质量与性能指标影响分析实验	
	5G 核心网功能设计与部署	14.	5G 核心网 NFV 部署与服务管理	
6		15.	5GC 控制面与用户接入鉴权	6
		16.	5GC 会话管理与用户面流程分析	
		17.	5G 切片编排与应用分析	
7	5G 网络切片技术 与应用	18.	5G Qos 设置与业务指标测试分析	6
		19.	5G 切片分级与部署策略	
8	5G 电信业务与移	20.	5G 电信业务配置与体验	4
8	动边缘计算	21.	5G 边缘计算对业务影响分析	4
	5G+行业应用与专	22.	5G 混合专网切片综合设计与测试	
9	网设计	23.	5G+行业应用模型与切片专网部署与实施	4

4.5 产品优势

- 真正全自由的 5G 网络架构与场景设计,支持随心所欲设计并验证各种 5G 网络及业务的实现方案;
- 仿真 3GPP 标准协议接口与数据封装, 真实模拟底层数据处理过程, 支持学员深度实践;
- 不仅关注 5G 网络管道本身的操作实践,还关注 5G 业务设备的组网设计与实践,真正体现通信全网概念;
- 以全网的视角进行设备间交互及业务过程的动画展示,让学员不只关注设备操作,更培养学员的框架思维;
- 自带丰富教学任务案例,构建坡度式的教学体系,学员上手快,老师教学便利;
- 5G 通信网络工作岗位全过程实践,构造完整 5G 技术能力培养模型。

4.6 产品价值

主体	产品价值
	1. 信息技术与教育深度融合,提升学院教学信息化水平,构建开放性实验资源。
学院	2. 提升教学实践效果,满足体系化教学需求,提高专业建设质量;
	3. 降低设备损耗,减轻环境污染,提高设备使用率。
	1. 可通过虚拟仿真技术, 重现 5G 现网工作环境, 实现专题化、针对性、演示型教学, 提升教学效果;
教员	2. 解决使用实际 5G 设备教学的各种问题, 补充缺失的教学内容, 并使教学更容易执行;
	3. 直接使用教学案例进行教学,减少备课与教学内容制作内容,减轻教员教学负担。
	1. 使学员在实践中掌握 5G 网络技术的各项技能,并通过实践帮助学员掌握发现问题、解决问题的方法;
学员	2. 专注培养 5G 网络技术原理与工程应用,面向高等级的 5G 技术工程师培养目标,提升学员学业质量;
	3. 仿真软件的可开放给学员在任何时间、地点进行实践,增加学员练习时间,学习更充分。